% scribe: Tye Lidman % lastupdate: Oct. 2, 2005 % lecture: 6 % title: Convergence of random variables % references: Durrett, section 1.5 % keywords: weak law of large numbers, WLLN, pointwise convergence, almost sure convergence, Lp convergence, weak convergence, convergence in distribution, Stout's almost sure convergence, i.o., ev., infinitely often, eventually % end \documentclass[12pt,letterpaper]{article} \include{macros} \newcommand{\convpoint}{\stackrel{p.w.}{\longrightarrow}} \newcommand{\conv}{\rightarrow} \newtheorem{fact}[theorem]{Fact} \begin{document} \lecture{6}{Convergence of random variables}{Tye Lidman}{tlid@berkeley.edu} (These notes are a revision of the work of Jin Kim, 2002.) \section{Convergence of random variables} % keywords: weak law of large numbers, WLLN, pointwise convergence, almost sure convergence, Lp convergence, weak convergence, convergence in distribution, Stout's almost sure convergence % end First significant example: the \emph{weak law of large numbers (WLLN)}. We want to state that with a general notion of convergence in probability. \begin{definition} $\:\:$ Given a sequence of r.v's $X_n$ defined on a probability space $(\Omega ,\mathcal{F} ,\P)$, say $X_n$ \emph{converges in probability} to $X$, $X_n \pcv X$, if $X$ is a r.v.\ on $(\Omega ,\mathcal{F} )$, and for all $\epsilon >0$, % $$\lim_{m \to \infty} \P(\lvert X_n-X\rvert >\epsilon ) = 0\mbox{.}$$ \end{definition} \begin{theorem}[Weak Law of Large Numbers] Let $X,X_1,X_2,\dotsc$ be i.i.d. with $\E\lvert X\rvert < \infty$. Then $$\frac{1}{n}\sum_{i=1}^n X_i \pcv \E(X)\mbox{.}$$ \end{theorem} Other notions of convergence of r.v.'s: {\bf Simplest: } (discussed in previous lectures) is $\conv$. \par {\bf Pointwise Convergence: } $X_n(\omega ) \conv X(\omega )$ for all $\omega \in \Omega$. This is a very strong notion: too strong for many purposes. \par {\bf Almost Sure Convergence: } We say $X_n \ascv X$ if $X_n(\omega ) \conv X(\omega )$ for all $\omega \not\in N$, with $\P(N)=0$, or equivalently $\P(\omega : X_n(\omega )\rightarrow X(\omega )$ as $n \rightarrow \infty)=1$. \par {\bf Convergence in $L^p$ $(p\geq 1)$: } We say $X_n \lpcv X$ if $\lVert X_n-X \rVert _p \conv 0 $, i.e. $\lim_{n \rightarrow \infty} \E\lvert X_n-X\rvert ^p = 0$. \par {\bf Convergence in Distribution: }(Not really a notion of convergence of r.v.) A notion of convergence of a probability distribution on $\mathbb{R}$ (or more general space). We say $X_n \dcv X$ if $\P(X_n\leq x)\conv \P(X\leq x)$ for all $x$ at which the RHS is continuous. This weak convergence appears in the central limit theorem. \par \begin{fact} (See text) $X_n \dcv X$ $\iff$ $\E f(X_n) \longrightarrow \E f(X)$ for all bounded and continuous function $f$. \end{fact} {\bf Properties in Common for } $\pcv , \convpoint , \ascv , \lpcv$: \par a) $X_n \conv X$, $Y_n \conv Y \Longrightarrow X_n+Y_n \conv X+Y$, $X_nY_n \conv XY$. \par b) $X_n \conv X \Longleftrightarrow (X_n-X) \conv 0$ (useful and common reduction). \par c) For all of $\pcv , \ascv ,$ and $\lpcv$ the limit $X$ is unique up to a.s. equivalence. \par d) Cauchy sequences are convergent (completeness). (Need a metric to metrize $\pcv$, but that is easily provided. See text.) \begin{theorem} The following property holds among the types of convergence. \begin{center} \setlength{\unitlength}{1cm} \begin{picture}(10,6.5) \put(1.5,5){\framebox(3,1){$X_n \ascv X$}} \put(6.5,5){\framebox(3,1){$X_n \lpcv X$}} \put(4,2.5){\framebox(3,1){$X_n \pcv X$}} \put(4,0){\framebox(3,1){$X_n \dcv X$}} %leftarrow \put(4.5,3.7){\line(-1,1){1.3}} \put(4.2,3.6){\line(-1,1){1.35}} \put(4.45,3.5){\line(-3,1){.6}} \put(4.45,3.5){\line(0,1){.6}} %rightarrow \put(6.35,3.7){\line(1,1){1.3}} \put(6.65,3.6){\line(1,1){1.35}} \put(6.4,3.5){\line(0,1){.6}} \put(6.4,3.5){\line(3,1){.6}} \put(7.5, 4){ $(\ast)$} %centerarrow \put(5.4, 2.5){\line(0,-1){1.4}} \put(5.6, 2.5){\line(0,-1){1.4}} \put(5.5,1){\line(-1,1){.4}} \put(5.5,1){\line(1,1){.4}} \put(7,2){ $(\ast \ast)$} \end{picture} \end{center} \end{theorem} \begin{proof} $(\ast)$ can be proved by Chebyshev's inequality (with usually $p=2$): \[ \P( | X_n - X | > \epsilon) \le \frac{\E (| X_n -X | ^p)}{\epsilon^p} \; \] $(\ast\ast)$ is proved in the text. \end{proof} \begin{example}[Moving blip] (An example showing that almost sure convergence is a stronger condition than convergence in probability.) On $[0,1]$ with Lebesgue measure, define $X_n = 1_{(x_n,\,x_n+1)}$ where the addition is interpreted as modulo $1$ and $x_n$ is any sequence with: $x_{n+1}-x_n \conv 0$ as $x_n \uparrow \infty$ (e.g. $x_n = 1 + \frac{1}{2} + \dotsb + \frac{1}{n}$ or $x_n = \log n$). $\P(\lvert X_n \rvert > \epsilon) = X_{n+1} - X_n \conv 0$ for all $0<\epsilon<1 \Longrightarrow X_n \pcv 0$, but $X_n$ does not converge almost surely to $0$. \end{example} \begin{example} Suppose that $X_1, X_2, \ldots$ are r.v.'s that have mean $0$, have finite variances, and are uncorrelated. Let $S_n = X_1 + \dotsb + X_n$. If $\sum_{k=1}^\infty \E(X_k^2)<\infty$, then $S_n$ converges in $L^2$ to a limit $S_{\infty}$, hence $S_n \pcv S_{\infty}$, i.e.\ $\lim_{n\rightarrow\infty} \P(\lvert S_n - S_{\infty} \rvert > \epsilon ) = 0$ for all $\epsilon > 0$. \end{example} \begin{proof} Look at the Cauchy criterion. Take $m>n$: % $$\E(S_m-S_n)^2=\E\left(\sum_{k=n+1}^m X_k \right)^2 = \negmedspace\sum_{k=n+1}^m \negmedspace \E(X_k^2) \rightarrow 0$$ % as $m,n \rightarrow \infty$. Therefore, % $$\sum_{k=1}^\infty \E(X_k^2)<\infty\mbox{.}$$ % \end{proof} \begin{fact} If the $X_n$ are independent (or more generally, martingale distributions), then $S_n\ascv S_\infty$. \end{fact} The proof of this fact is deferred. \begin{fact}[Stout's Almost Sure Convergence] There are examples of uncorrelated sequences with $\sum_n X_n^2<\infty$ where a.s. convergence fails. \end{fact} \section{Preliminaries for Study of a.s. Convergence} % keywords: i.o., ev., infinitely often, eventually % end \begin{definition} Let $q_n$ be some statement, true or false for each $n$. We say $q_n$ \emph{infinitely often} or $(q_n \mbox{ i.o.})$ if for all $n$ there is $m \ge n$ such that $q_m$ is true, and $(q_n \mbox{ ev.})$ if there exists $n$ such that for all $m \ge n$, $q_m$ is true. Now let $q_n$ depend on $\omega$, giving events % $$A_n = \{\omega:q_n(\omega)\mbox{ is true}\}\mbox{.}$$ % We now have new events, % $$\{A_n \mbox{ i.o.}\} = \{\omega : \omega \in A_n \mbox{ i.o.}\} = \bigcap_n \bigcup_{m \ge n} \, A_m\mbox{,}$$ % and % $$\{A_n \mbox{ ev.}\} = \bigcup_n \bigcap_{m \ge n} \, A_m\mbox{.}$$ % \end{definition} In analysis, $1_{(A_n \mbox{ i.o.})} = \lim_{n \rightarrow \infty}\sup_{m\ge n} 1_{A_m}$ and $ 1_{(A_n \mbox{ ev.})} = \lim_{n \rightarrow \infty}\inf_{m\ge n} 1_{A_m}$. Given a sequence of events $A_n$ for each $\omega \in \Omega$, consider $1_{A_n(\omega)}$ as a function of $n$, $\omega \longmapsto (1,0,0,1,\dotsc)$. {\bf Notice (de Morgan)} that $\{A_n \mbox{ i.o.}\}^c = \{A_n^c \mbox{ ev.}\}$ and $\{A_n \mbox{ ev.}\}^c = \{A_n^c \mbox{ i.o.}\}$ {\bf Observe } $X_n \ascv X \Longleftrightarrow \forall \epsilon > 0 \mbox{, } \P(\lvert X_n - X \rvert > \epsilon \, \mbox{ i.o.}) = 0$. {\bf Argue this (Facts about convergence)} $X_n \conv X \Longleftrightarrow \forall \epsilon > 0\mbox{, } \lvert X_n - X \rvert < \epsilon \mbox{ ev.}$, so % \begin{eqnarray*} X_n \ascv X & \Longleftrightarrow & \forall \epsilon > 0\mbox{, } \P(\lvert X_n-X \rvert \le \epsilon \mbox{ ev.}) = 1 \\ & \Longleftrightarrow & \forall \epsilon > 0\mbox{, } \P(\lvert X_n-X \rvert > \epsilon \mbox{ i.o.}) = 0. \end{eqnarray*} \end{document}